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ABSTRACT

A prototype two-dimensional Diffusion Synthetic Acceleration (DSA) method on a Block-based
Adaptive Mesh Refinement (BAMR) transport mesh has been developed. The Block-Adaptive
Mesh Refinement Diffusion Synthetic Acceleration (BAMR-DSA) method was tested in the
PARallel TIme-Dependent SN (PARTISN) deterministic transport code. The BAMR-DSA
equations are derived by differencing the DSA equation using a vertex-centered diffusion
discretization that is diamond-like and may be characterized as “partially” consistent. The
derivation of a diffusion discretization that is fully consistent with diamond transport differencing
on BAMR mesh does not appear to be possible. However, despite being partially consistent, the
BAMR-DSA method is effective for many applications. The BAMR-DSA solver was
implemented and tested in two dimensions for rectangular (XY) and cylindrical (RZ) geometries.
Testing results confirm that a partially consistent BAMR-DSA method will introduce instabilities
for extreme cases, e.g., scattering ratios approaching 1.0 with optically thick cells, but for most
realistic problems the BAMR-DSA method provides effective acceleration. The initial use of a
full matrix to store and LU-Decomposition to solve the BAMR-DSA equations has been extended
to include Compressed Sparse Row (CSR) storage and a Conjugate Gradient (CG) solver. The
CSR and CG methods provide significantly more efficient and faster storage and solution
methods.
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1. INTRODUCTION

Orthogonal single-level mesh are often inefficient in multiple-material and multidimensional
problems because of the necessity of having cells that are small enough to contend with optically
thick regions on the mesh. As a result, a single-level mesh may produce cells that are too fine in



regions that do not need it, wasting valuable computer resources. The use of Adaptive Mesh
Refinement (AMR) permits more efficient and more realistic mesh in the modeling of
multidimensional transport simulations[1]. A Block-AMR method was implemented in the
PARallel TIme Dependent SN (PARTISN) deterministic transport code but lacked any iterative
acceleration other than Transport Synthetic Acceleration (TSA). TSA by itself is not considered
to be sufficeintly efficient for many of the problems run with PARTISN. The Diffusion Synthetic
Acceleration (DSA) method is the preferred transport acceleration method for most problems run
with PARTISN. Without DSA, the use of a Block-AMR mesh was somewhat limited because of
the relatively slow convergence rate of source iteration for many routine applications.

The original prototype Block-AMR DSA (BAMR-DSA) method[2] implemented in PARTISN
utilized a dense or full matrix storage system and was solved with the LU-Decomposition
(LUD)[3] method. The dense storage format is inefficent because the BAMR-DSA system matrix
is filled with a large percentage of zeros. The LUD method performs an exact matrix inversion
and was choosen in order to verify that any problems with the solution of the BAMR-DSA
method was a result of the method and not the matrix inversion. Because LUD is slow, O(N3)
operation, the dense matrix storage format is inefficient, and the solution of the BAMR-DSA
system on large parallel computers is required, the Compressed Sparse Row (CSR) matrix
storage format and the Conjugate Gradient (CG)[4] method has been implemented and tested for
the BAMR-DSA system’s solver.

The BAMR-DSA method and its solution using the sparse CG linear systems solver is discussed.
A background on Block-AMR is presented followed by a brief discussion of the BAMR-DSA
method. The CSR and CG methods are then discussed with respect to the BAMR-DSA system.
Finally, a discussion of the tests conducted and results is presented.

2. BLOCK-ADAPTIVE MESH REFINEMENT

In a multidimensional AMR mesh, the cells are not simply connected as they would be in a
standard single-level mesh[1]. An AMR mesh is composed of orthogonal cells that are locally
refined by some sort of error estimation so that the cell sizes along a given direction are no longer
constrained by the need for a small cell in one section of the mesh. Thus, an AMR mesh may
map more efficiently to the actual problem geometry than a simply connected grid[2].

The type of AMR method implemented in PARTISN is block-based[1]. In a block-based AMR
mesh, the entire geometry is divided into blocks. Each block is assigned a level number that
indicates how many cells it has. In two dimensions, a level zero block contains only one cell
(1×1), a level one block has four cells (2×2), a level two block has sixteen cells (4×4), etc.
The external source and cross sections are constant inside a given cell, but may vary between
cells. The cells inside a block are simply connected, simplifying the calculations inside a block.
The blocks themselves are also simply connected in order to make the sweep over the blocks
straightforward even for parallel problems. However, cell interfaces between blocks may not be
simply connected, and, as a result, require some special numerical techniques. The development
of these techniques were discussed for the transport sweeps in Baker[1] and for DSA in Ward[2].

Any cell on a boundary of a given block in a Block-AMR mesh may contain from zero up to two
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hanging nodes depending on how many neighboring blocks are at a higher level of refinement.
Neighboring blocks may be no more than one level in difference from each other. Fig. 1 shows
the first three cell-case types to illustrate the idea of hanging nodes. The first cell type is Case-0

Figure 1. Three Block-AMR cell types (cases) and their median-mesh.

because it has no hanging nodes. Cells of the same or higher-refinement level than neighboring
cells are considered Case-0. The second type of cell is Case-I and it has one hanging node. This
case cell exists on the boundary of a block and is interfacing with a block that is at a higher level.
The final cell case shown in Fig. 1 is a Case-II cell and it has two hanging nodes. This cell exists
in a corner of a block that is interfacing with two blocks of a higher level.

3. DERIVATION OF THE BAMR-DSA METHOD IN TWO DIMENSIONS

The BAMR-DSA method is based on the DSA residual method for orthogonal single-level
meshes. The single-level residual DSA method is derived from the source iteration form of the
transport equation, which is, for one energy group and isotropic scattering[5],

�Ω ·�∇ψ�+ 1
2 +σtψ�+ 1

2 = σsφ� +q, (1)

where � is the iteration counter for source iteration, ψ�+ 1
2 is the angular flux, φ� is the scalar flux

from the previous iteration �, q is the inhomogeneous source, σt is the total cross section and σs is
the isotropic scattering cross section. The scalar flux φ�+ 1

2 is used along with φ�, from the
previous iteration, to form the residual DSA equation,

−�∇ ·D�∇δφ�+ 1
2 +σaδφ�+ 1

2 = σs(φ�+ 1
2 −φ�), (2)

where D = 1
3σt

is the diffusion coefficient, σa = σt −σs is the absorption cross section, and δφ�+ 1
2

is an estimate for the error in the scalar flux. To complete the DSA iteration, the scalar flux error
δφ�+ 1

2 resulting from the solution of Eq. (2) is used to update the scalar flux at �+ 1
2 to produce
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the final �+1 iteration scalar flux, i.e.,

φ�+1 = φ�+ 1
2 +δφ�+ 1

2 . (3)

The above Eqs. 1-3 are iterated upon until the maximum error at any one point from one iteration
to the next is less than some tolerance.

The lack of simple connectivity in the Block-AMR mesh meant that the extension of DSA to
Block-AMR was not straightforward[2]. Inversion of the left-hand-side transport operator is
performed by sweeping along a face-centered mesh and using diamond-differencing to find the
cell-centered angular flux values. DSA accelerates the source iterates on the right-hand side by
solving a vertex-centered system of simultaneous algebraic equations for the scalar flux errors.
The existence of hanging nodes in Block-AMR cells complicates this derivation of the
vertex-centered system, which has cell-centered sources associated with the residuals derived
from the cell-centered fluxes produced from sweeps.

In the Block AMR-DSA scheme, an equation is produced for each vertex scalar flux that
represents a balance over the median-mesh of the cell associated with the vertex. The
median-mesh in a cell is shown as the dashed lines in Fig. 1. The balance equations represent a
diamond-like approximation to the surface integral form of the diffusion equation,

−
∮

D�∇φ ·�ndA+σa

∫
V

φdV =
∫

V
QdV, (4)

where φ is the diffusion scalar flux, dV is the volume of the subcell defined by the median-mesh,
and Q is the source or residual for the volume. The cross sections and source within the cells are
assumed to be constant. The balance equations derived from Eq. 4 may be characterized as
“partially” consistent. The derivation of a fully consistent[6] diffusion discretization with
tranpsort diamond-differencing on AMR meshes[2] does not appear to be algebraically possible.

The BAMR-DSA method has been implemented and tested in two dimensions for rectangular
(XY) and cylindrical (RZ) geometries. The diamond-difference method is applied to Eq. 4 for
each node in each cell to produce a series of difference equations. For the Case-0 cell, the four
difference equations in two-dimensional generalized geometry are,

−D
Δx1

(φ2 −φ1)ΔAx2 −
D

Δx2
(φ3 −φ1)ΔAl

x1
+σaφ1

ΔAl
x1

Δx2

2
= Q

ΔAl
x1

Δx2

2
, (5a)
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where the differential areas and cell widths are dependent on the type of two-dimensional
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geometry used. The rectangular (XY) geometry differential areas are,

ΔAx1 =
Δx
2

∗Δz, (6a)

ΔAx2 =
Δy
2

∗Δz, (6b)

with Δz equal to unity because the geometry is two-dimensional. For cylindrical geometry (RZ)
the surface areas are,

ΔAl
x1

= π(r2
i − r2

i− 1
2
) (7a)

ΔAr
x1

= π(r2
i+ 1

2
− r2

i ) (7b)

ΔAx2 = 2πri
Δz
2

, (7c)

where ri− 1
2

and ri+ 1
2

are the radial boundaries, ri is the center of the cylindrical cell, and Δz is the
cell size along the cylindrical axis. The cell widths Δx1 and Δx2 are Δx and Δy for rectangular and
Δr and Δz for cylindrical geometry.

The four Eqs. 5 are conservative and produce an Symmetric Positive Definite (SPD) linear
system. The derivation of the generalized two-dimensional geometry difference balance
equations for the Case-I and -II cells is similar to the Case-0 cell. The balance equations and
diffusion matrices for these two cases are discussed in Ward[2] along with a discussion of the
derivation of the boundary conditions, implementation details, stability issues, and testing of the
BAMR-DSA method.

4. SOLUTION OF BAMR-DSA SYSTEM WITH CONJUGATE GRADIENT METHOD

The prototype BAMR-DSA method[2] implemented in PARTISN stored the diffusion matrix in a
dense format, where all elements (including zeros) were stored, and was solved using the
LU-Decomposition method[3]. The storage and solution methods of the prototype are inefficient
and slow. They were choosen in order to verify that any problems with the prototype
BAMR-DSA method were due to the method and not the linear system solution technique. Since
the prototype BAMR-DSA method has been verified[2], the focus of advancing the method now
is to enhance its viability for use in large scale problems. In order to achieve this, the storage of
the diffusion matrix and the solution of the BAMR-DSA system must be efficient and work in
parallel. Neither the original dense matrix storage format or the LUD solution method meet these
criteria.

Understanding the structure of the diffusion matrix is useful in the determination of storage and
solution techniques. The diffusion matrix produced by the BAMR-DSA method is sparse, i.e.
more zero elements than non-zero elements, and SPD. While the diffusion matrix is banded, its
bandwidth and structure are unpredictable and mesh-dependent. As the number of nodes
increases, the sparseness of the diffusion matrix becomes more pronounced. An example of a
Block-AMR mesh used in the Fe-H2O shielding test problem is shown in Fig. 2. This mesh has a
minimum block-level of one and a maximum block-level of three. The structure of the diffusion
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Figure 2. Example Block-AMR Mesh Used in the Fe-H2O Shielding Problem
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Figure 3. Structure of the example Block-AMR Mesh Used in the Fe-H2O Shielding Problem

matrix for this mesh is shown in Fig. 3. The mesh has 569 nodes, producing a diffusion matrix
with 569×569 = 323761 elements. Only 2881 elements in the diffusion matrix are non-zero,
resulting in a matrix that is 99.1% zeros. This mesh is moderately sized compared to the
problems that are expected to be run with the BAMR-DSA method.
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The Compressed Sparse Row[4] (CSR) matrix storage method was chosen to reduce the diffusion
matrix storage requiremenmts. The CSR storage method is implementable on a parallel
computing environment and many linear system solvers have been adapted to solve sparse
systems. The CSR method stores only the non-zero elements. These elements are stored in a
single one-dimensional double precision array of size Nnz. The elements’ matrix locations are
stored in two integer arrays, one for the column location of each non-zero element and one that
stores the number of columns with data for each matrix row. The size of these three arrays are,
respectively, Nnz, Nnz, and Nn +1, where Nn is the number of nodes in the Block-AMR mesh.

The original linear solver used for the solution of the prototype BAMR-DSA method was
LU-Decomposition[2]. LUD is not an efficient linear solver becuase it requires O(N3)
operations, so using it for solving large BAMR-DSA systems is impractical. As a result of this
and the need to find an efficient parallel linear solver, a new linear system solution method was
sought. The CG[4] method was chosen to solve the BAMR-DSA system because the diffusion
matrix is SPD. The Conjugate Gradient (CG) method is an iterative solver that effectively solves
sparse SPD linear systems[4]. CG is also parallelizable and works with many preconditioners.

5. RESULTS AND DISCUSSION OF THE UTILIZATION OF CSR AND CG FOR THE
BLOCK AMR-DSA METHOD

The BAMR-DSA method’s acceleration and solutions for both multilevel meshes and single-level
meshes is comparable to the original five-point DSA method implemented in PARTISN[2].
Table I shows results from a set of runs of the Fe-H2O shielding[1] test problem for square cells

Table I. Comparison of Single-Level and AMR Two-Dimensional Iron-H20 Runs for XY
Geometry and Square Cells

Mesh Acceleration? Total # Cells # Iterations Right Leakage Particle Balance

s.l. no 1,600(40×40) 1,147 5.054×10−2 3.354×10−4

s.l. dsa 1,600(40×40) 61 5.093×10−2 3.032×10−8

s.l. dsa 6,400(80×80) 60 5.182×10−2 −2.35×10−8

C0,L3 no 1,600(40×40) 1,147 5.054×10−2 3.354×10−4

C0,L3 dsa 1,600(40×40) 55 5.092×10−2 6.748×10−9

ml234 no 2,656 1,160 5.035×10−2 3.084×10−4

ml234 dsa 2,656 106 5.074×10−2 −1.90×10−9

in the XY geometry and a convergence tolerance of 1×10−4. The single-level (s.l.) runs are
solved with the original PARTISN single-level transport solver and source accelerators. The
Case-0 BAMR-DSA (C0,L3) runs are done with a 5×5 block mesh that is equivalent to the
single-level 40×40 mesh, so each block is level 3 (8×8). The multilevel Block-AMR mesh’s
lowest-level block is a 2 (4×4) and the highest-level block is a 4 (16×16). The single-level
80×80 mesh run is included to determine if grid convergence was achieved and for use in
comparison of the level-4 blocks of the ml234 mesh. All of the BAMR-DSA problems were run
with the LUD solver.

The scalar fluxes for the BAMR-DSA and original single-level runs are within convergence
criteria. The integral right leakages for each set of runs also agree well with each other. The
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particle balance comparison for each set of runs confirms that, as expected, the DSA method
produces a solution with better balance than nonaccelerated runs. As expected, the DSA runs
required fewer iterations than the unaccelerated run. The larger number of iterations for the
multilevel mesh runs when compared to single-level mesh equivalent runs is because of the
hanging nodes present in a true Block-AMR mesh. However, this is still a large improvement
over no acceleration.

As the number of nodes in a Block-AMR mesh increases, the ratio of zero-elements to total
number of elements increases, i.e. the diffusion matrix becomes more sparse. The sparseness of
the mesh presented in Fig. 2 was shown in Fig. 3. Table II shows a comparison of storage
requriements for the diffusion matrix for both dense and CSR methods for various B-AMR

Table II. Comparison of Storage Requirments for Dense and CSR Matrices

Mesh Mesh Type Nn(N2
n ) Nnz Zero(%) Stor.(dense) Stor.(CSR) Dense

CSR

1 ml122 3332(110889) 1677 98.5 6.768 Mb 0.164 Mb 41.3

2a C0,L2 4412(194481) 2121 98.9 11.87 Mb 0.208 Mb 57.2

2b C0,L3 16812(2825761) 8241 99.7 172.5 Mb 0.806 Mb 214.1

2c ml123 7172(514089) 3581 99.3 31.4 Mb 0.350 Mb 89.8

3 ml1-6 75372(5.7∗107) 38081 99.93 3467 Mb 3.72 Mb 932.9

meshes. The mesh in Table II with the same numbers are similar with the only differences related
to the levels of the various blocks. The mesh labeled 1, 2c, and 3 are all multi-level. Mesh #2c is
the one shown in Fig. 2. The remaining mesh are single-level equivalent Block-AMR mesh. The
example mesh shown in Table II are on the small side compared ot the mesh that will be typically
used with BAMR-DSA method. Thus, diffusion matrices with over 99% zero elements are
expected for our applications. The � 99% savings in storage space for the CSR method when
compared to the dense storage method is necessary in order for the BAMR-DSA method to be
practical for large mesh.

All of the mesh discussed in Table II were used on the Fe-H2O shielding problem using both the
LUD and CG methods on a single processor in order to determine the effectiveness of the CG
method. The results of these runs are presented in Table III. The result marked with a (*),

Table III. Comparison of Conjgate Gradient versus LU-Decomposition for Various Block-
AMR mesh in the Fe-H2O Shielding Problem

Mesh Nn Nnz NLUD
inners NCG

inners tLUD (s) tCG (s) tLUD
tCG

1 333 1677 76 76 7.32 0.73 10.0

2a 441 2121 64 64 21.01 0.9 23.3

2b 1681 8241 58 58 1352.9 8.78 154.1

2c 717 3581 61 63 103.4 1.89 54.7

3 7537 38081 3* 3* 51751 50.42 1026.4

mesh #3, was a diffusion only run which means that there was only one iteration per energy
group.
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In the process of testing the effectiveness of CSR-CG over dense-LUD, several Block-AMR
mesh were developed in which, while both solver methods could solve each inner iteration’s
BAMR-DSA linear system, neither solver method would coverge. BAMR-DSA’s failure to
converge for certain Block-AMR mesh is shown in Fig. 4. This figure shows the maximum
spatial flux change for each inner iteration of the third energy group for several Block-AMR
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Figure 4. Convergence Comparison of Several Similar Block-AMR Meshes and the LUD
and CG Solvers using the Block AMR-DSA Method on the Fe-H2O Shielding Problem

mesh and the LUD and CG solvers. The problems occur in the third energy group for mesh that
have too many blocks where the cell sizes are too large with a high scattering ratio (c = 0.994).
By increasing the level of many of these blocks the numerical instabilities disappear and the
method converges. Shown in Fig. 4 as “CG:BAMR:Pass”, mesh #2c, where most of the blocks
are level 2 or 3, converges. However, a multi-level mesh similar to mesh #2c, but with at least one
more level-1 block (CG:BAMR:Fail and LUD:BAMR:Fail), diverges. For runs where the
BAMR-DSA method is not converging switching off DSA when the inner iteration results start to
oscillate or diverge may allow convergance. In this case, turning off BAMR-DSA in the third
energy group after inner iteration #10 and doing only sweeps to finish converging to 1∗10−4

required a total of 391 iterations. While not a very good comparison to the 19 inner iterations for
mesh #2c, that is still fewer than the 1052 inner iterations required for sweeps alone.

6. CONCLUSIONS

The results of the testing of the original prototype BAMR-DSA method was discussed in
Ward[2]. This testing confirmed that a partially-consistent BAMR-DSA method will introduce
instabilities for extreme cases, e.g., scattering ratios approaching 1.0 with optically thick cells,
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but for most realistic problems the BAMR-DSA method provides a effective acceleration for
transport on a Block-AMR mesh.

While the above convergence issues for several of the Block-AMR mesh is troubling, overall the
BAMR-DSA method works very well for many problems. However, care must be taken when
choosing the block-levels for problems with high scattering ratios. In order to be useful,
BAMR-DSA must be used in conjunction with automatic mesh coarsening[7] and stability
monitoring.

The diffusion matrix produced by the BAMR-DSA method is sparse and SPD. While the
diffusion matrix is banded, its bandwidth and structure are unpredictable and mesh-dependent.
As the number of nodes on a mesh increases, the matrix becomes more sparse. The CSR[4]
matrix storage method was chosen to store the diffusion matrix because of the sparse nature of
the diffusion matrix. Over 99% computer storage savings is achievable for large Block-AMR
mesh. This savings is very important in order to run many of the problems which PARTISN is
designed to solve. In addition, since PARTISN is a parallel computing code, the CSR storage
method’s adaptibility to parallel solving techniques will be important.

The CG[4] method was choosen to solve the BAMR-DSA linear system because the diffusion
matrix is SPD. CG is implementable in parallel computing environments and works on sparse
systems. The CG method was able to achieve a factor of 1000 speedup over LUD for solving a
complete transport problem with DSA on a Block-AMR mesh. The faster solution time of CG
combined with the smaller storage requirements of CSR are promising results for the
BAMR-DSA method’s full incorporation into PARTISN.

ACKNOWLEDGMENTS

This work was performed at the Los Alamos National Laboratory (LANL) under contract
W-7405-ENG-36 with the U.S. Department of Energy.

REFERENCES

1. R. S. Baker, “A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle
Transport Equation,” Nucl. Sci. Eng., 141, pp. 1–12 (2002).

2. R. C. Ward, R. S. Baker, J. E. Morel, “A Diffusion Synthetic Acceleration Method for Block
Adaptive Mesh Refinement,” Nucl. Sci. Eng. (2004).

3. W.H.Press, et al., Numerical Recipes: The Art of Scientific Computing, Cambridge University
Press, Cambridge, MA (1986).

4. Y. Saad, Iterative Methods for Sparse Linear Systems 2nd ed., SIAM, Philadelphia (2003).
5. E. Lewis, J. W.F. Miller, Computational Methods of Neutron Transport, American Nuclear

Society Inc., Lagrange Park, IL (1993).
6. E. E. Larsen, “Asymptotic Diffusion Limit of Discretized Transport Problems,” Nucl. Sci.

Eng., 112, pp. 336–346 (1992).
7. S. Turner, “Automatic Mesh Coarsening for Discrete Ordinates Codes,” Transactions of the

Mathematics and Computation, Reactor Physics and Environmental Physics Conference,
Madrid, Spain, September 1999 (1999).

American Nuclear Society Topical Meeting in Mathematics & Computations, Avignon, France, 2005 10/10


